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This preliminary proposal for the implementation of a mid-scale RI-1 outlines a plan to design,

build, and deploy computing infrastructure for deep inference, to enable and propel American

academic research to advance scientific understanding of state-of-the-art very large language

models, which now dominate artificial intelligence (AI). The NDIF proposal consists of:

1. Development of open-source software that will enable deep inference research on very large

language models, a critical research capability not widely available to U.S. academics today.

2. The creation and testing of a computing cluster that will deploy the software to provide a

national deep inference service that will be made available to academic researchers.

3. Finally, training for PhD students and outreach and support for U.S. researchers to use this

facility to advance understanding of very large neural network models.

This computing infrastructure will be developed at Northeastern University, building on our

existing organizational structure, facilities, and experience in research computing. The hardware

cluster will be deployed at the Massachusetts Green High Performance Computing Center.

1 Introduction
One of the great challenges to continued progress in research on large-scale machine learning is

maintaining scientific transparency, collaboration, and innovation as AI enters into an era domi-

nated by very large “pre-trained” models. The development of massive neural language models

such as GPT-3 [1] and ChatGPT [2] has yielded blistering progress with respect to AI capabilities.

But researchers interested in analyzing how they work by probing the internal workings and push-

ing the limits of such models are hindered by inadequate access to resources and infrastructure.
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Figure 1: (a) Current services hosting large language models provide very limited interaction functionality (Top). One
can send input text in a request, and is then provided an output string (and scores associated with the final predictions).
(b) We propose developing infrastructure to provide deep access to hosted language model instances (bottom), which
will permit critical research without necessitating researchers hosting such models themselves. (c) The infrastructure
consists of new software libraries and a deployed distributed service to be shared by researchers nationwide.



We propose to develop infrastructure—open-source tools that can be replicated at other
universities and a hosted instance that makes these available to the broader academic research
community across a set of state-of-the-art models—to support advanced research on the mod-
ern, massive language models which are now central to AI. Figure 1 illustrates our proposed

infrastructure agenda. The overarching aim is to develop tools and services that will support

academic research on very large language models by permitting deep inference. Current state-of-

the-art models are so large that even running them—nevermind training, which is substantially

more computationally expensive—is not feasible for most academic researchers, owing to the cost

and complexity of hardware necessary to support such inference.

As a result, many academics now use commercial inference servers to run experiments. Such

services make large neural networks available only as opaque black-boxes that produce outputs

directly from a set of inputs (Figure 1a), which greatly limits the experiments one can perform,

and so constrains science. By contrast, deep inference (Figure 1b) would provide access to internal

model activations, parameters, and gradients; this transparency is necessary for research investi-

gating model inner-workings. To spread benefits and amortize the overhead of deep inference

research, we propose deploying a service architecture that can support researchers at multiple

institutions (Figure 1c), and developing software that can be replicated at other universities.

Leadership Team This project brings together an interdisciplinary group with deep expertise in

machine learning (ML)/natural language processing (NLP), programming languages, and large-

scale computing. PI Bau (Assistant Professor in Khoury College of Computer Sciences at North-

eastern) is a leading researcher in interpretability of large neural networks [3–6] and editing of

large models [7–10]. Bau also brings over 20 of software engineering experience in developing

and deploying major software platforms for Google, Microsoft, and open-source nonprofits. Co-PI

Wallace (Sy and Laurie Sternberg Interdisciplinary Associate Professor in Khoury) has extensive

research expertise in NLP and interpretability of such models [11–18]. Co-PI Guha (Associate Pro-

fessor in Khoury) brings deep experience in programming languages, including language-based

security [19–22], GPU-accelerated domain specific languages [23, 24], and pre-trained models for

code generation [25]. Co-PI Bell (Assistant Professor in Khoury) is an expert in software engineer-

ing and systems, including architectural design [26], testing and continuous integration [27–30],

and analysis [31–33]. Team-member Schröter (Director of Research Computing at Northeastern

University) organizes strategic planning for research computing resources at Northeastern, includ-

ing on-premise hybrid cloud infrastructure, and he works with university researchers across all

disciplines, to achieve research goals using shared high performance computing infrastructure.

2 Scientific Justification
2.1 The opportunities represented by large pretrained models
Large pre-trained models have shown impressive versatility across many difficult tasks and have

shown apparent in-context generalization and meta-learning capabilities. These complex phe-

nomena have emerged despite the simplicity of the self-supervised language modeling training

regime [34]. Typical language model pre-training objectives are straightforward: for example,

one commonly trains models to predict the next word in a sequence, given the preceding words.

Despite this simplicity, when trained on huge datasets of text, large models such as GPT-3 [1]

are capable—to varying degrees—of answering factual questions about the world [35], translating

between natural languages [1], performing mathematical reasoning [36], writing computer code

based on English specifications [37], obeying descriptive requests to perform a variety of tasks [1],

and extrapolating performance of a new task given a small set of input examples [1].

What has enabled the emergence of such apparently sophisticated behaviors? Smaller models



trained with exactly the same objectives do not exhibit the same range of capabilities. Therefore,

it is widely believed that the main enabler has been an increase in model size by several orders

of magnitude. The varied complex behaviors engendered by this model scaling have motivated a

nascent and growing subfield in which researchers aim to characterize the capabilities of models

and probe how they work. This line of research was galvanized by BERT [38], a precursor of

modern (much larger) models. Despite its modest size by current standards, BERT demonstrated

capabilities sufficiently interesting to motivate a body of work clarifying the structure and internal

representations of that model [39]. These efforts were possible in part because BERT-scale networks

are sufficiently small that academic researchers can run (and probe) them on academic-scale

hardware, i.e., single mid-tier GPU equipped machines.

2.2 Huge models have created a crisis of transparency
While the emergence of very large models, such as GPT-3, has energized the NLP and broader

ML research communities, at the same time the dominant success of such models presents the

research community with a new crisis of transparency that is very different from the previous

generation of “large-scale” AI. When AlexNet shocked the computer vision community in 2012 by

winning the ImageNet Visual Recognition Challenge [40], that model encapsulated its complexity

in 62 million learned parameters. The size was large for the period, but still sufficiently small for

academic labs to be able to reproduce, validate, modify, retrain, and study the model. Similarly,

when the first successful pre-trained models for NLP—e.g., ELMO [41] and BERT [38]—emerged,

these were large by the standards of the time, but still small enough for academic researchers

to run, interrogate, and tinker with locally, enabling important research into the capabilities and

limitations of the “first generation” of pre-trained neural NLP models [39]. That accessibility led to

an explosion of creativity and innovation, with a doubling of AI papers published annually from

2011 to 2021, and a 30-fold increase in the annual number of AI-related patents filed [42].

However, the current advance represented by GPT-3 scale models is qualitatively different.

The 175-billion parameter GPT-3 model is private. Alternative, open-access large language models

(such as OPT [43], Bloom [44], and NEO-X [45]) are technically available to researchers, but are

often de facto inaccessible due to their size. Academic researchers do not in general have sufficient

resources to run such models, and so they are unable to probe them in depth. Most academic

work on analyzing large language models therefore relies on the paid Application Programming

Interfaces (API) made available by OpenAI or other commercial vendors.

The primary advantage to using inference API services is that they obviate the need for one

to run (very large) models locally to interact with them. However, this approach comes with a

critical trade-off: Commercial inference APIs provide only limited access to model outputs, which

ensures that model weights remain proprietary. However, this precludes researchers from probing

the internals of models and characterizing the internal mechanisms that models have learned from

data. These limits threaten to slow the pace of innovation, shielding new developments behind

the cloak of private ownership where advances in AI cannot be subject to the kind of competitive

scrutiny that is provided by independent academics. Next we make the case for the need for

deep inference among academic researchers and characterize specific research lines that are only

possible to pursue with such access.

2.3 Research Enabled by Deep Inference
When asked online, 1 over 400 members of the research community say that the proposed National

Deep Inference service would support their research. Several researchers point out the strong

1People on a Twitter thread in December 2022 were asked to respond if they had research that

would be enabled by a transparent national inference service for large models.



need given the practical difficulties of investigating models whose parameters do not fit into the

memory of a typical research computing node. Professor Boaz Barak (Harvard) observes, “Any

model that doesn’t fit on one GPU starts to be complicated for researchers to use even if they do

have enough GPUs to fit... A central engineering resource that all academics can share would

be a game changer.” Professor Tom Dietterich (Oregon State) says, “I strongly support a public

National Deep Inference service.... We will want to support many different things: fine tuning,

access to the training data, access to external resources.” Professor Ana Marasović (University of

Utah) notes, “Having academic access ... would enable not only machine learning academics, but

also academics without expertise in training models, to study large language models.”

Model scale (# parameters in billions)

Math Word Problem Repository (MAWPS)
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Figure 2: Capabilities that emerge in large models (data
from [46]). Mathematical reasoning, complex sequential
question-answering, and multistep strategic reasoning do
not appear in small language models, but they emerge in
the largest language models when chain-of-thought prompts
are used. The mechanisms giving rise to these capabilities
are not well-understood. A core goal of this infrastructure
proposal is to enable academic researchers to develop a better
understanding of how and why such large-language-model
capabilities emerge.

The need for a large-model inference ser-

vice is widely recognized because the commu-

nity has discovered that such models exhibit

qualitatively different capabilities than small

models. A recent survey of established bench-

marks [34] catalogued over 175 different capa-

bilities that emerge in large-scale models but

that do not appear in smaller models. These

include the ability to perform multidigit arith-

metic, unscramble words, and correctly select

truthful answers when baited by commonly-

stated misconceptions.

Several emergent behaviors are among the

most interesting that have been observed in any

machine-learned model. For example, strategic

multi-step reasoning [47] and handling com-

plex question sequences in a conversation [48]

are hallmarks of high-level reasoning. Large

models can handle these tasks when prompted

to use “chain-of-thought” generation [46], but this ability does not emerge in small models2 (Fig-

ure 2). Another striking characteristic of very large models is that they have been observed to

perform well under domain shift [50]. Robustness of model behavior under such shifts has been a

major concern in machine learning, and it is an unexpected development to see very large models

that become more robust to distribution shift, without special training methods, as the parameter

count grows beyond 100 billion.

2.4 Understanding Learned Algorithms
The emergent capabilities of large models pose a fundamental question: How do they work? When

a large model makes a surprising decision, what information does the model use to inform its

decision, and what rules does the model apply to make its choice? Understanding such mech-

anisms is important when working to distinguish profound computational capabilities from the

mere appearance of capabilities.

Representation probing. One major line of inquiry investigates internal mechanisms by asking:

what information does the network contain? For example, it has been found that even when a

language model is conditioned to output falsehoods, it may contain a hidden state that represents

the true answer internally [51], suggesting that large models may exhibit deceptive or pandering

behavior. Such a gap between external failure modes and internal state can only be identified

2Instruction fine tuning [49] can induce CoT in large models at about 62 billion parameters.



by probing model internals. Representation probing has been used to characterize the behaviors

of smaller models [39, 52–56], but applying these methods to understand large models requires

transparent inference that provides access to internal state.

Attention mapping. A model can also be understood by asking: What parts of the input is

it attending to? Analyzing attention in small models has revealed how simple dependencies

are processed [57–59], including the discovery of very explicit copying circuits in transformer

models [60]. Analyzing per-token model probabilities can reveal model self-knowledge [61] and

differences between human and AI-generated text [62]. Extending these lines of inquiry to large

models will require transparent access to model internals.

Causal mediation analysis. Another way emergent learned algorithms can be understood is

through measuring the impact of modifying individual computational steps within a model. Such

causal analysis has been applied to identify attention heads that mediate gender bias in language

models [63]; indirect object identification in sentences that name multiple subjects [64]; and the

recall of world knowledge within large language models, such as knowledge of the relationships,

associations and properties of real-world entities [9, 10]. Applying these methods to large models

will require direct access to internal state.

2.5 Lightweight Fine-Tuning
One of the most compelling properties of large language models is their ability to perform few-shot
learning, i.e., learn to perform new tasks from a handful of examples. In the era of massive pre-

trained base models, methods to efficiently fine-tune them for specific tasks of interest has become

an important topic. Yet this important direction for research requires access to model gradients,

not provided by existing commercial offerings.

Continuous prompt tuning. One strategy for few-shot learning entails prompting [65] models

with in-context examples such as sets of fill-in-the-blank prompts. A downside to this paradigm

is that it requires specifying a discrete prompt (i.e., template) upfront suitable to the task under

consideration. Recent work has sought to instead effectively learn prompts from a few labeled

examples, for example by synthesizing continuous-valued soft prompts via fine-tuning [66–68].

However, even this lightweight training strategy requires access to gradients in the underlying

language model, which is not available under with commercial inference services.

Training adapter layers. Another approach to lightweight fine-tuning involves fitting adapter
layers [69], which are free parameters inserted into the network and then fine-tuned for a specific

task (while other network parameters remain fixed). Adapter layer fine-tuning has been shown

to permit comparatively efficient adaptation of large language models to new tasks [70]. But, like

continuous prompt fine-tuning, updating adapter parameters requires gradients, and therefore

evaluating and improving adapter methods requires an interface to models that supports deep

inference. NDIF will provide this capability.

3 The Need for New Deep Inference Infrastructure
3.1 The three computational challenges facing large language model research
In the broader ML research ecosystem, there are three main computational challenges that confront

researchers studying large language models, detailed below. This proposal is focused on the third

of these challenges, since deep inference for research is not well-served by existing efforts.

1. Training a model at the 175-billion parameter plus scale is prohibitive for any individual aca-

demic lab. With 3,000× more parameters than AlexNet, the increase in scale has far outstripped

the growth of hardware density given by Moore’s law. At this size, training such a model

can only be justified at national scale: for example, Google has estimated that the Microsoft
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Figure 3: Details of a deep inference request. Unlike commercial inference that provides no transparency, with the
NDIF, researchers can execute flexible experiments by inserting computations in the internals of the deep network
inference process. To maintain safe and efficient co-tenancy, experiment computations are packaged as HookModules
that enable resource accounting and scheduling.

cluster used by OpenAI to train GPT-3 consumed about 1.2Gwh of electricity to train that model

once—that is the power of about 120 average US homes for a year.

2. Simple inference (predictions): even after model training is complete, using a trained model

for inference (i.e., to make predictions) can be prohibitive. 175 billion parameters would require

700Gb of RAM at single-precision, or 350Gb of RAM at half-precision. A machine capable of

loading the parameters of modern neural networks in GPUs requires 5-10 high-end parallel

computing devices, totalling between $100,000-$200,000; the cost of buying or renting time on

such a machine puts it out of reach of most academic groups. To meet these needs, several

commercial inference services (such as the OpenAI API) are available that amortize the cost of

running large models across many users. However, all existing services are geared toward com-

mercial applications, providing high speed and high reliability but providing only superficial

access to outputs of models (Figure 1a).

3. Deep inference to enable research: to understand the mechanisms within large models, re-

searchers use techniques such as representation probing, causal mediation analysis, salience

mapping, direct model editing, soft prompting, and lightweight fine-tuning. However, these

methods require access to model internals that go beyond the needs of commercial applications

and that are not provided by commercial inference services. Furthermore, since providing

researchers with full access to parameters or gradients would allow a user to inspect or even

duplicate a model, providing open research access could put private investment in propri-

etary models at risk. Therefore, despite the demand and need from academic researchers, we

should not expect commercial inference services to provide deep inference capabilities for large

proprietary models.

3.2 Existing efforts to train large language models with open parameters
The need to train open, non-commercial 175-billion plus parameter models has been widely

recognized, and several efforts are already in progress toward this end. Our proposal will make

such models available as research subjects for academic researchers. Those models include:

• Meta OPT, a set of commercial language models trained by Meta, with parameters that are

made available to academic researchers. OPT includes a 175-billion parameter model.



• BigScience Bloom, a 176-billion parameter multilingual model trained by BigScience, a collab-

oration of European agencies, the Huggingface company, and many others.

• Eleuther AI GPT-NeoX and GPT-J, 20-billion and 6-billion parameter language models trained by

a research collaborative with support from Stability.AI, CoreWeave, and Google. The Eleuther

team plans to continue with training a 150-200-billion parameter model.

• Tsinghua GLM, a 130-billion-parameter Chinese-English model supported by Zhipu.AI.

• Yandex YaLM, a 100-billion-parameter Russian-English model from Yandex.

Several ongoing efforts are also training large models to incorporate human feedback to explicitly

follow instructions, similar to OpenAI’s InstructGPT and ChatGPT: BigScience BloomZ fine-tunes

Bloom to add human feedback; CarperAI will fine-tune EluetherAI models.

Despite the availability of such models with more than 100 billion parameters, academic

research using these large models remains prohibitive because of the high cost of hardware and

the complexity of software. Our proposal addresses this problem.

3.3 Existing commercial services supporting simple inference
Commercial inference services address the high overhead of running large pretrained language

models by offering shared inference API services. These preload a few important models on shared

severs, allowing many users to amortize the cost of running models. Our current proposal adopts

a similar model, but unlike commercial inference services, the goal of our proposed service is to
support fundamental research, which imposes requirements that go beyond commercial inference

services. Commercially available inference APIs include: The OpenAI inference API providing

access to OpenAI’s GPT-3 and other large models; The Azure inference API, which offers several

Microsoft-proprietary models; the Huggingface inference API; and the Cohere inference API.

Unfortunately, existing commercial solutions treat large models as a opaque black boxes. Com-

mercial inference APIs provide natural-language responses to natural-language prompts, and they

can also provide numeric scores for alternative predicted responses. However, commercial APIs

don’t allow reading or overriding specific activations, parameters, or gradients within the model

while inference occurs. Such internal access is key for researchers who investigate large models.

4 Implementation
Large models pose several engineering challenges: loading can take minutes or hours, so a model

should be used by as many requests and users as possible before being unloaded. Furthermore,

a model spanning multiple GPU devices incurs orders of magnitude higher communication costs

compared to a single-GPU model. The challenge is amplified by research needs: Unlike production

applications of deep networks that have a simple, fixed input-output pattern, scientists investigat-

ing model internals will extract and alter hidden state data in novel ways, and experiment probes

can drive bandwidth demands. A final challenge is to enable research flexibility while protecting

users from each other: errors by a researcher must not degrade the functioning of the service.

We will address these engineering challenges though a modular software development ar-

chitecture to enable flexible research experimental design, while maintaining efficient and safe

co-tenancy of the service. Capabilities of the service will be enabled in phases, with modular

functionality deployed incrementally to gather community feedback, participation, and testing.

4.1 Modular Software Architecture
All common experimental designs for deep model inference can be expressed by inserting addi-

tional computations between standard steps of deep network inference. To empower researchers to

run complex experiments, the service API will enable such inserted computations using established

modular idioms in the PyTorch [71] deep learning framework.



Figure 3 illustrates the service design. In addition to the standard input, an experiment

request specifies a set of HookModule computations that execute bounded computations that can be

assembled into an experiment. Each HookModule is a PyTorch torch.nn.Module that encapsulates,

bounds and accounts for computing resources consumed prior to the processing of the request.

The accounting allows a scheduler to plan and allocate requests in an order that prevents any one

user from exhausting GPU memory or otherwise interfering with the shared service functionality.

4.2 Phased Hardware Deployment
The service will be backed by a 400-GPU cluster that will be procured and installed in phases. Sets

of GPU devices will be hosted on high-memory nodes (with 8 or more GPUs per node), configured

to maximize throughput for our application, for example, sized to enable a full inference pass for

a large model to be able to be executed on a single node where possible. Suitable hardware design

will reduce communication overhead and reduce the need for exotic interconnects between nodes.

While the software stack is under development, we will deploy the cluster in phases to capitalize

on hardware advances during service deployment. Each year we plan to expand the cluster by 80

GPUs, with full capacity deployed in the fifth year.

4.3 Phased Software Development and Service Deployment
To ensure broad but efficient use of large model inference capabilities, our implementation will

provide several software features that will be deployed in five phases.

Phase 1. Develop and deploy single-pass inference, resource accounting, and low-latency low-

bandwidth and interfaces to a selected set of preloaded large models. Basic transparent state access

will be enabled, and this will allow testing by a limited set of users.

Phase 2. Enable high-latency high-throughput batch access to enable larger-scale experiments,

and remote data caching to reduce overhead for iterated algorithms such as multi-token generation,

soft-prompt tuning, adapter training, and causal tracing.

Phase 3. Support remote data processing and backpropagation to allow scientists to fine-tune

models and perform other nontrivial computations before results are communicated off-device.

Phase 4. Support on-premise jobs to support experiments that go beyond the scope of our ordi-

nary services such as access to external data or other complex interactions.

Phase 5. Support self-hosted operation, with custom deployments in other clusters and clouds.

4.4 Outreach and Training
The goal of our project is to enable a broad range of impactful research into large language models.

Therefore, after the initial API is deployed, we will conduct outreach and training to enable

researchers to use the facility, and to gather feedback to improve it.

In phases 3 and 4, we will begin to train PhD students to use the service, and we will hold a pair

of workshops aimed at enabling researchers. One research workshop will be geared towards the

machine learning community, and a second research workshop will be interdisciplinary, including

social science and humanities research applications. Then in phase 5 we will prepare instructional

materials and hold an educational workshop for teachers and students. To facilitate this work, we

plan development of tutorials and code releases aimed at researchers and teachers.

5 Evaluation and Oversight
Our project is driven by four measurable goals:

1. Advance scientific understanding of large language models.

2. Provide broad access to researchers and students for inference not served elsewhere.



DIFHUB
LM AIMS

YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5
Fall Spring Summer Fall Spring Summer Fall Spring Summer Fall Spring Summer Fall Spring Summer

Phase 1 Procure initial equipment and install
Preloaded models
Single-pass requests
Transparent state access
Low-latency interactive access
Procure and install second phase of equipment
Resource accounting

Phase 2 High-latency batch access
Remote data caching
Procure and install third phase of equipment
Throughput goal: >50% sustained GPU use on basic API

Phase 3 Outreach to researchers and workshop on basic API
Client library development: common experiment support
Backpropagation requests
Remote data processing
Procure and install 4th phase of equipment

Phase 4 On-premise jobs
Client library development: visualizations and interactions
Service revisions based on community feedback
Outreach to researchers and workshop on advanced API
Procure and install 5th phase of equipment

Phase 5 Throughput goal: >50% sustained GPU on advanced API
Self-hosting deployment on cloud or other infrastructure
Tutorial development and documentation
Broad educational outreach: workshop for students

Figure 4: Five-phase deployment timeline.

3. Enable efficient use of scarce computational resources.

4. Train students on large models, to build the next generation of AI engineers and researchers.

These goals correspond to metrics that we will track. To measure our progress in realizing impact
by providing broad access and efficiency, we will track and aim to increase:

• Number of monthly academic users of the deployed service, a core measure of reach.

• Sustained GPU utilization in the deployed service, a core measure of efficiency.

• Number of peer-reviewed research works that use our service or software in experiments.

• The number of deployments of our software stack on clusters beyond the initial service.

In addition, to ensure that our project remains impactful, efficient and fair, we will recruit an

external advisory council to meet and review the project’s progress and goals two times per year.

6 Operations and Maintenance
After the deep inference facility is deployed and operational, it will transition to regular operations

and maintenance. Operations are not part of this RI-1 proposal, and funding for operations will

be raised in future grant proposals. Ongoing operations will include three kinds of activities:

1. Oversight of research operations, including the provisioning of service to allow prioritization

of important science objectives; and continuing outreach to the research community. This will

be done by forming an academic research operations team.

2. Inference service operations, consisting of operation, monitoring, maintenance, updating, and

security of the hardware cluster and the software service. These duties will be taken on by the

Northeastern research computing operations team.

3. Open source code maintenance, consisting of coordinating, testing, and updating the open-

source code base produced for NDIF. Coordination of the open source code base will be done

by a software engineering team.

Continuing operations will be funded under future grants to further advance scientific goals.



7 Broader Impacts
7.1 Benefits to the wider U.S. research community
Academic NLP researchers in the U.S. are currently limited in their ability to run and analyze the

very large language models which now dominate the field. Such groups will in general be unable

to procure hardware sufficient to run these models locally. But current hosted offerings (e.g., as

provided by OpenAI) are severely limited in terms of what they will provide to users.

The proposed infrastructure research will define new approaches to providing granular access

to very large language models, and instantiate such access in an academically oriented end-point.

This will confer substantial benefit to the U.S. AI research community, members of which must

currently rely on private enterprises such as OpenAI to access such large-scale models. Such access

is, however, restricted to such a degree that it precludes pursuing important, emerging technical

questions related to interpreting and adapting massive language models. Providing such granular

access to multiple large models via an intuitive API will greatly expedite critical NLP research.

7.2 Opportunities for student training
Integrating research into undergraduate curricula. We are committed to ensuring that under-

graduates at Northeastern and beyond benefit from the proposed infrastructure. To this end we

will develop materials—lectures, exercises, and homeworks—that cover analysis of large language

models. We will pilot and refine these materials in relevant courses at Northeastern (e.g., Machine

Learning I and II, Natural Language Processing, and Practical Neural Networks). Bau and Wallace

regularly lead these offerings. Further, Wallace, as Director of the Bachelors in Data Science pro-

gram (and serves on the undergraduate curriculum committee), is well-positioned to ensure that

the developed materials are incorporated into the curricula of these courses.

Importantly, once developed, we will make these materials—which will use the hosted API

developed and instantiated under this project—available to faculty at other institutions, scaling the

impact by enabling undergraduates in CS across the U.S. to gain hands-on experience analyzing

and working with the internals of massive language models, which increasingly dominating the

AI landscape. Note that such exercises are not currently possible at the vast majority of institutions

given the resources required to run such models. And even if students are willing and able to pay

for access via a commercial API, they would not be able to access model internals in a granular

way, in turn severely limiting the kinds of analysis possible.

Supporting undergraduate and graduate research. To train the next generation of researchers

in AI and NLP, we must provide them the capabilities to run, analyze, and improve state-of-the-art

systems—i.e., very large language models. The proposed infrastructure will provide that, allowing

students to engage in cutting edge NLP research in a way not currently possible at most institutions.

Institutional commitment to Diversity and Inclusion (DEI). Khoury College of Computer Sci-

ences is a leader in increasing representation in Computer Science (CS). Khoury is home to the

Center for Inclusive Computing (CIC [72]), which aims to increase the representation of women

majoring in CS across the U.S. Also, with NSF support, Khoury has developed the Align program

[73], which provides a pathway to an MS in CS for students without CS backgrounds. This unique

program attracts a notably diverse student body: For example, in 2018 half of the incoming class

was female, and 15% was Hispanic, Latino, African-American, Native American, or Pacific Islander

[74]. Khoury also has a verified College-wide Broadening Participation in Computing plan [75].
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